

## 100% Renewables and Low-Carbon Scenarios in Europe - a Comparison



Gunnar Boye Olesen, International Network for Sustainable Energy (INFORSE-Europe)

## 100% Renewables and Low-Carbon Scenarios in Europe - a Comparison

Gunnar Boye Olesen, International Network for Sustainable Energy (INFORSE-Europe)

100 % Renewables and Low-Carbon Scenarios in Europe by 2050. EU Sustainable Energy Week, April 14, 2011, Brussels

Lowcarbon Socities Network Project, supported by EU FP7 program



## INFORSE-Europe in Lowcarbon Societies Network

- INFORSE-Europe is network of 80 NGOs
- Collecting Lowcarbon scenarios: 80% greenhouse gas reductions in EU / allowing climate stabilising at or below 2'C global temperature increase
- Produce newsletter
- Maintain website, www.lowcarbon-societies.eu
- Mailing lists, sign up at website



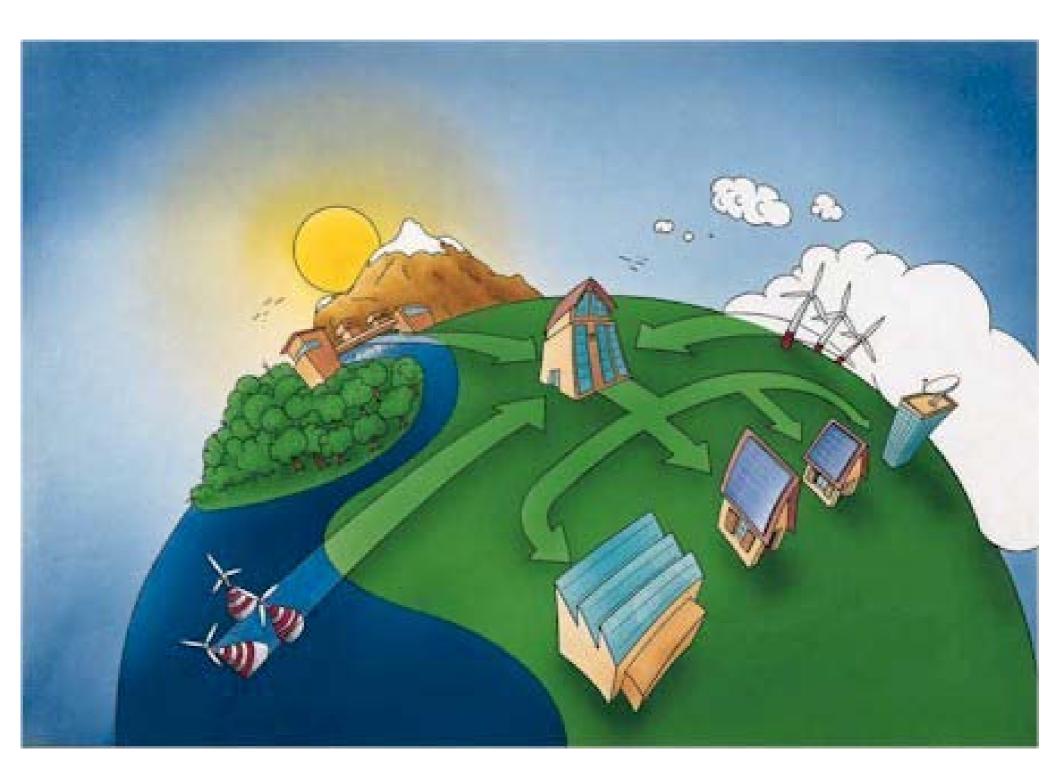


### 100% Renewables and Low-Carbon Scenarios

- 4 Global scenarios: Greenpeace/DLR, INFORSE/Roskilde University, WWF/Ecofys, PIK with REMIND-R, CIRED with IMACLIM
- 5 EU level scenarios: EU roadmap2050, Eur. Climate Foundation, Greenpeace+EREF, Greenpeace En.Evolution, INFORSE
- 23 scenarios of EU countries (of which 13 in France, Germany & Denmark)
- 5 scenarios of countries outside EU (USA, Australia, Belarus, Ukraine, Russia)






### Scenarios are Very Different

- Technical/engineering: no economy
- Micro economic/bottom-up
- Macro-economic/top-down
- Hybrid (linked bottom up and top-down models)
- Annual or hourly balances
- One electricity pool/market or more load centers linked with physical constraints
- Single (future) year or evolution scenarios
- Economic optimisation or purely input based

"Comparing apples to oranges"







#### Global Scenarios

Technically we can supply energy services for 9 billion people and better standards than today in 2050 with renewable energy - if we use energy efficiently

(INFORSE/Roskilde University, WWF/Ecofys, Greenpeace/DLR)

Costs for lowcarbon transition around 1.5% af GDP (PIK with REMIND-R, Aug 2009, multi-regional economic hybrid model) for global Lowcarbon scenarios for the period 2000 - 2050,

Costs less than 1% in annual average of GDP for 100% renewable energy scenario

(WWF/Ecofys2010, Greenpeace/DLR 2010, multi-regional bottom-up)

Some macro-economic studies have shown very high costs of CO<sub>2</sub> reductions (Neo-classical models by Nordhaus et.al.)

"Costs of business as usual is biggest uncertainty"

#### EU

EU can reach 100% renewable energy in 2050 with moderate growth or stable use of energy services (economic growth is somewhat different from growth in energy services)

(INFORSE2010, Greenpeace+EREC2010, Greenpeace/Energynautics2010, Eur. Climate Foundation2010, FoE/Stockholm Env. Institute 70% greenhouse gas reductions by 2030. Eur.)

One scenario with 100% RE by 2040 (INFORSE)





#### EU - Scenario Costs

#### European Climate Foundation(ECF):

 up to 0.07%/year increase in GDP (positive contrib.),

#### EU Roadmap2050:

 1 bill €/year savings - 2 bill €/year extra costs in average, depending on fossil fuel prices.

(EU Commission/PRIMES, 80% greenhouse total greenhouse gases, 85-90% fossil fuel)





#### **EU- Other Effects:**

#### **Employment:**

 large employment increase, 1.5 million jobs (EU Roadmap 2050/different model)

Energy import reductions: 50-100% reduct.

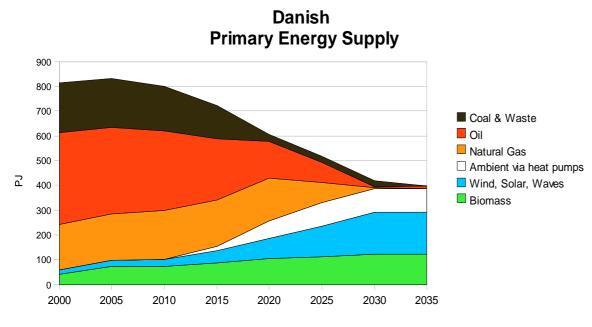
#### **Electricity Networks:**

- ECF: Massive investments in networks, mainly Southern Europe & Central Europe.
- Greenpeace/Energynautics: Massive inv. In networks: about 4 bill. €/year until 2050





#### **National Scenarios**


- Technically we can have 100% renewable energy for all countries studied, a few with some electricity imports, (but we have no Lowcarbon scenarios from some difficult countries like Belgium, Netherlands)
- 100% RE can be done until 2050, 2040 or even 2030 according to different scenarios.
- Some economic models concluded it was difficult to reach 100% renewable energy (and made no 100% RE scenario)





# Two scenarios has 100% Renewable by 2030







Both are engineering/micro-economic scenarios, one show good economy in 2030 as a point in time

### **Analysing National Scenarios**

#### Costs:

- Micro-economic models: lower or higher costs than baseline,
- Macro-economic models: higher costs than baseline, but not radically higher,
- Employment: positive, because of more local energy production, small extra costs
- Energy import reductions, increase security of supply





#### Other effects

- Additional investment required in first two decades
- Increased electricity use for transport & heat pumps for heating
- Electricity grid important, but expansion differ, from larger increases than in EU-scenarios to no increases needed for international lines
- Gas grid proposed for storage and back-up for power supply
- Reduced primary energy demand (30% 60%)
  from efficiency + less condensing power plants

#### Renewable vs. Nuclear vs. CCS

- There is a choice (we do not need all)
- With optimistic assumptions for nuclear, nuclear shows economic benefits
- Nuclear scenarios do not include realistic external costs (those analysed)
- With optimistic assumption CCS show economic benefits, realistically after 2030
- A diverse renewable mix seems most economic for RE-scenarios, as each source is limited, so last part is more expensive



### Thank you







#### See:

http://www.lowcarbon-societies.eu



