What Can Models Do and Say — and What Not? Energy — Economy — Environment Prospective

Ruben Bibas Sandrine Mathy¹ Brigitte Knopf²

2010, April 29

¹ CIRED

²PIK

Outline

- Economic & energetic foresight: context
 - Various visions of the future...
 - What are the different approaches?
- Economic & Energetic foresight: modeling tools
 - Top-Down vs. Bottom-Up...
 - Hybrid models
 - The heated discussions around the models
- Hybrid models as a way forward to address the issue
 - The reality to represent
 - Modeling principles
 - Study Example: Macro-Economic Effects of Climate Policy

Economic modeling issues

Represent techno-economic systems

- Emissions tracking
- Location of regulation instruments
- Abatements key mechanisms: Substitutions, Technical change, Sequestration.
- Behaviors, reactions and adjustments
- Vulnerability to damages

Formulate hypotheses, visions of the future

- Demography, technical progress, low-carbon technologies
- Pressure on natural resources (esp. fossil fuels)
- Geopolitics

Be able to reproduce the past?

The modeling "industry" evolution

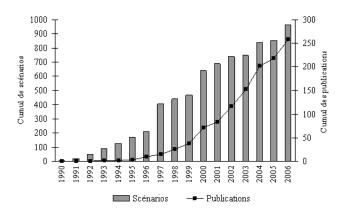
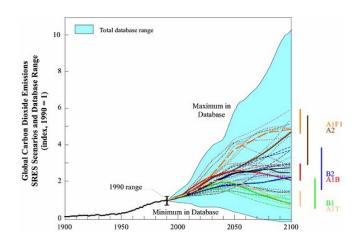



Figure: From: IPCC database (NIES)

Too many scenarios: loss of understandability

3 complementary methods

The different visions

- Exploratory approaches using 'What if...? " scenarios
- Normative approaches to suggest desirable alternatives
- Search for optimal strategies

Top-Down Models: general equilibrium models

Different model types

- Intertemporal optimization
- Recursive simulation
- Static analysis

Assets

- General equilibrium effects
- Financing constraints
- Fiscal structures
- International trade, balance of payments

Limits

- Production & consumption functions standardized and aggregated
- Simplifying hypotheses (optimality, rational anticipations...)
- Calibration on only 1 year (99,99% of the models)

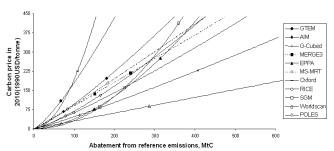
Bottom-up models: an engineers vision

Principle

Optimization of the choices of technologies under constraints (including profits, investments & final demands)

Assets

- Detailed representation of existing technologies
- Technological substitutions
- Inclusion of technological speicificities (esp. electricity)


Limits

- Exogenous demand (often as elasticity of aggregated macroeconomic module)
- No analysis of macroeconomic feedbacks

Bottom-Up vs. Top-Down: a long-lived opposition... And uncertainties on costs evaluation ex ante

Differences stemming from methodology or calibration?

Reconstructed MACCs - European Union

Source: EMF, CIRED

....combining the advantages of both Bottom-Up models and Top-Down models

Hybrid models development

- Pseudo-hybride (ETA-MACRO)
- Soft-link: coupling between two existing models
 - GEMINI E3 + MARKAL for Switzerland
 - Schäfer & Jacoby EPPA + MARKAL Transport
- Hard link: tools conceived as hybrid models
 - ObjECTS
 - SIMS
 - E3MG
 - Imaclim-R
 - Remind-R

Why so many modeling approaches?

- No ideal model of global economy
- Uncertainty on many parameters
- No empirical validation on historical trajectories
- Unresolved controversies on representation choices

Technical universes representation Main hypotheses

Confusion on the status of the optimality

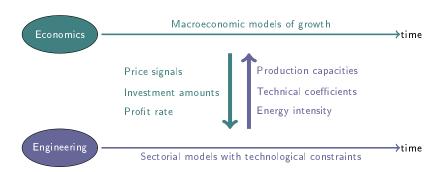
- Optimization vs. Simulation
- Status of the expectations and optimization of the "representative agent"

The expectations at the heart of the political problem

- A shift in meaning from the theory of rational expectations
- Little efforts to the dichotomy "myopic expectations vs. omniscient expectations"

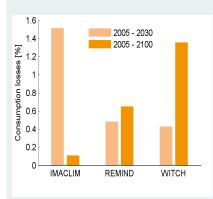
No regrets strategics and optimality

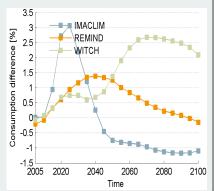
- Static or dynamic "No regrets decisions"
- Optimism of Bottom-Up models? Or the calibration issue?


Political issues are of utmost importance

- The transition issue
 - · Not discussed with the existing tools
 - Ignored by the economics for the non-specialist public
 - Paradox between reasonable costs and cautious decision-makers
- Shed light on the political & economical instruments
- Bring together decision & modeling

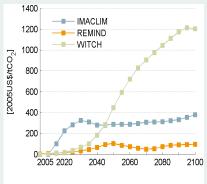
The challenge of coherence between macroeconomic trajectories & technological evolutions


Economics	Macroeconomic models of growth Technical coefficients? Energy demand of services?	→ time
Engineering	Financial constraints on investments ? Demand dynamics ? Sectorial models with technological constraints	→ time


The challenge of coherence between macroeconomic trajectories & technological evolutions

Results from the RECIPE study (see Luderer et al. 2009)

- Mitigation costs over the century range from 0.1% (IMACLIM-R) to 1.4% (WITCH) for the 450ppm scenario
- IMACLIM projects very high costs initally, followed by negative costs later
- \bullet For the more ambitious 410 ppm scenario, mitigation costs lie between 1.5% to 4%



Results from the RECIPE study (see Luderer et al. 2009)

- IMACLIM requires high initial carbon price to induce learning and structural change
- Projected carbon prices in 2100 range from US\$100 (REMIND) and US\$1200 (WITCH)

Conclusion: A new design for climatic policies

Weakness of a climatic policy based only on carbon price

- Inducing important costs in emerging economies (thus need of stabilizing quickly expectations in a blurry environment)
- Not avoiding lock-in carbon intensive pathways

Necesity of considering beyond carbon prices

- Infrastructures policies
- Interactions with innovation processes beyond the energy sector

And see climatic policies as embedded in a larger political context with temporal dependencies

- Early investment in infrastructures
- Innovation emphasis in favor of low carbon technologies

